• Twitter

New findings on the diversity of co-occurring RNA viruses in fruit flies

Congratulations to Stephen Sharpe and his coauthors for recently publishing the following paper in the Journal of Invertebrate Pathology!

Read the publication.

"Tephritid fruit flies have a large diversity of co-occurring RNA viruses"

Stephen R. Sharpe, Jennifer L. Morrow, Laura E. Brettell, Deborah C. Shearman, Stuart Gilchrist, James M. Cook & Markus Riegler


Tephritid fruit flies are amongst the most devastating pests of horticulture, and Sterile Insect Technique (SIT) programs have been developed for their control. Their interactions with viruses are still mostly unexplored, yet, viruses may negatively affect tephritid health and performance in SIT programs, and, conversely, constitute potential biological control agents. Here we analysed ten transcriptome libraries obtained from laboratory populations of nine tephritid species from Australia (six species of Bactrocera, and Zeugodacus cucumis), Asia (Bactrocera dorsalis) and Europe (Ceratitis capitata). We detected new viral diversity, including near-complete (>99%) and partially complete (>80%) genomes of 34 putative viruses belonging to eight RNA virus families. On average, transcriptome libraries included 3.7 viruses, ranging from 0 (Z. cucumis) to 9 (B. dorsalis). Most viruses belonged to the Picornavirales, represented by fourteen Dicistroviridae (DV), nine Iflaviridae (IV) and two picorna-like viruses. Others were a virus from Rhabdoviridae (RV), one from Xinmoviridae (both Mononegavirales), several unclassified Negev- and toti-like viruses, and one from Metaviridae (Ortervirales). Using diagnostic PCR primers for four viruses found in the transcriptome of the Bactrocera tryoni strain bent wings (BtDV1, BtDV2, BtIV1, and BtRV1), we tested nine Australian laboratory populations of five species (B. tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Bactrocera cacuminata, C. capitata), and one field population each of B. tryoni, B. cacuminata and Dirioxa pornia. Viruses were present in most laboratory and field populations yet their incidence differed for each virus. Prevalence and co-occurrence of viruses in B. tryoni and B. cacuminata were higher in laboratory than field populations. This raises concerns about the potential accumulation of viruses and their potential health effects in laboratory and mass-rearing environments which might affect flies used in research and control programs such as SIT.

Photo: Bactrocera dorsalis (Source: Wikipedia).